adunit2

Wednesday, May 26, 2021

FORMATION OF BUS ADMITTANCE MATRIX ,Y BUS, METHODS TO DETERMINE YBUS, EXAMPLES

 FORMATION OF YBUS

The bus admittance matrix, YBUS plays a very important role in computer aided power system analysis. It can be formed in practice by either of the methods as under:

1. Rule of Inspection

2. Singular Transformation

3. Non-Singular Transformation

4. ZBUS Building Algorithms, etc.

Rule of Inspection


Consider the 3-node admittance network as shown in figure5. Using the basic branch relation: I = (YV), for all the elemental currents and applying Kirchhoff‟s Current Law principle at the nodal points, we get the relations as under:


At node 1: I1 =Y1V1 + Y3 (V1-V3) + Y6 (V1 – V2) At node 2: I2 =Y2V2 + Y5 (V2-V3) + Y6 (V2 – V1)

At node 3: 0 = Y3 (V3-V1) + Y4V3 + Y5 (V3 – V2)

In other words, the relation of equation (9) can be represented in the form

IBUS = YBUS EBUS                                                                                   

Where, YBUS is the bus admittance matrix, IBUS & EBUS are the bus current and bus voltage vectors respectively. By observing the elements of the bus admittance matrix, YBUS of equation (13), it is observed that the matrix elements can as well be obtained by a simple inspection of the given system diagram:

Diagonal elements: A diagonal element (Yii) of the bus admittance matrix, YBUS, is equal to the sum total of the admittance values of all the elements incident at the bus/node i,

Off Diagonal elements: An off-diagonal element (Yij) of the bus admittance matrix, YBUS, is equal to the negative of the admittance value of the connecting element present between the buses I and j, if any. This is the principle of the rule of inspection. Thus the algorithmic equations for the rule of inspection are obtained as:

 

Yii = S yij (j = 1,2,…….n)

Yij = - yij (j = 1,2,…….n)                                                                           

For i = 1,2,….n, n = no. of buses of the given system, yij is the admittance of element connected between buses i and j and yii is the admittance of element connected between bus i and ground (reference bus).


Bus impedance matrix

In cases where, the bus impedance matrix is also required, it cannot be formed by direct inspection of the given system diagram. However, the bus admittance matrix determined by the rule of inspection following the steps explained above, can be inverted to obtain the bus impedance matrix, since the two matrices are inter-invertible.


No comments:

Post a Comment